CS521PE/IT525PE: COMPUTER GRAPHICS (Professional Elective - II)

III Year B.Tech. CSE I-Sem

L T P C 3 0 0 3

Prerequisites

- 1. Familiarity with the theory and use of coordinate geometry and of linear algebra such as matrix multiplication.
- 2. A course on "Computer Programming and Data Structures"

Course Objectives

- 1. The aim of this course is to provide an introduction of fundamental concepts and theory of computer graphics.
- 2. Topics covered include graphics systems and input devices; geometric representations and 2D/3D transformations; viewing and projections; illumination and color models; animation; rendering and implementation; visible surface detection;

Course Outcomes

- 1. Acquire familiarity with the relevant mathematics of computer graphics.
- 2. Be able to design basic graphics application programs, including animation
- 3. Be able to design applications that display graphic images to given specifications

UNIT - I

Introduction: Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random scan systems, graphics monitors and work stations and input devices

Output primitives: Points and lines, line drawing algorithms (Bresenham's and DDA Algorithm), midpoint circle and ellipse algorithms

Polygon Filling: Scan-line algorithm, boundary-fill and flood-fill algorithms

UNIT - II

- **2-D geometrical transforms**: Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems
- **2-D viewing**: The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, Cohen-Sutherland algorithms, Sutherland –Hodgeman polygon clipping algorithm.

UNIT - III

3-D object representation: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces. Basic illumination models, polygon rendering methods.

UNIT - IV

- **3-D Geometric transformations**: Translation, rotation, scaling, reflection and shear transformations, composite transformations.
- **3-D viewing**: Viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.

UNIT - V

Computer animation: Design of animation sequence, general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications

Visible surface detection methods: Classification, back-face detection, depth-buffer, BSP-tree methods and area sub-division methods

TEXT BOOKS:

- 1. "Computer Graphics C version", Donald Hearn and M. Pauline Baker, Pearson Education
- 2. "Computer Graphics Principles & practice", second edition in C, Foley, Van Dam, Feiner and Hughes, Pearson Education.
- 3. Computer Graphics, Steven Harrington, TMH

REFERENCES:

- 1. Procedural elements for Computer Graphics, David F Rogers, Tata Mc Graw hill, 2nd edition.
- 2. Principles of Interactive Computer Graphics", Neuman and Sproul, TMH.
- 3. Principles of Computer Graphics, Shalini Govil, Pai, 2005, Springer.